МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ИНСТИТУТ УПРАВЛЕНИЯ, ЭКОНОМИКИ И ПРАВА ФАКУЛЬТЕТ УПРАВЛЕНИЯ

Кафедра моделирования в экономике и управлении

ЛИНЕЙНАЯ АЛГЕБРА

38.03.02 Менеджмент

Код и наименование направления подготовки/специальности

Маркетинг

Наименование направленности (профиля)/ специализации

Уровень высшего образования: бакалавриат

Форма обучения: очная, очно-заочная

Квалификация- бакалавр Форма обучения- очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

Линейная Алгебра
Рабочая программа дисциплины
Составитель:
кандидат фм. наук, доцент Н.И. Манаенкова
 Ответственный редактор

УТВЕРЖДЕНО Протокол заседания кафедры № 9 от 02.04.2022

ОГЛАВЛЕНИЕ

1. Пояснительная записка

- 1.1. Цель и задачи дисциплины
- 1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций
- 1.3. Место дисциплины в структуре образовательной программы
- 2. Структура дисциплины
- 3. Содержание дисциплины
- 4. Образовательные технологии
- 5. Оценка планируемых результатов обучения
- 5.1. Система оценивания
- 5.2. Критерии выставления оценок
- 5.3. Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине
- 6. Учебно-методическое и информационное обеспечение дисциплины
- 6.1. Список источников и литературы
- 6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»
- 6.3. Профессиональные базы данных и информационно-справочные системы
- 7. Материально-техническое обеспечение дисциплины
- 8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов
- 9. Методические материалы
- 9.1. Планы семинарских / практических / лабораторных занятий
- 9.2. Методические рекомендации по подготовке письменных работ
- 9.3. Иные материалы

Приложения

Приложение 1. Аннотация дисциплины

1. Пояснительная записка

1.1 Цель и задачи дисциплины

Цель дисциплины – подготовить специалистов, обладающих знаниями достижений классической и современной математики, необходимых квалифицированным управленцам.

Задачи дисциплины:

- обеспечить уровень математической грамотности студентов, достаточный для формирования навыков математической постановки и решения классических оптимизационных задач управления, моделирования процессов управления;
- научить студентов применять основные понятия и методы линейной алгебры для расчета различных количественных характеристик в задачах экономической теории и теории управления;
- сформировать у студентов навыки использования усвоенных математических понятий и методов анализа для выработки оптимальных решений в сфере экономики и управления.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций:

Компетенции	Индикаторы компетенций	Результаты обучения
ОПК-2 Способен осуществлять сбор, обработку и анализ данных, необходимых для решения поставленных управленческих задач, с использованием современного инструментария и интеллектуальных информационно-аналитических систем	ОПК-2.1 Знает источники, способы и методы аккумуляции информации, необходимой для решения поставленных управленческих задач	Знать: - основные определения, понятия и методы изучаемых разделов «Линейной Алгебры» - методы анализа и решения систем линейных уравнений - методы решения равновесных моделей экономики; Уметь: - формулировать основные результаты изучаемых разделов; - уметь использовать математический аппарат теории матриц - уметь применять адекватные модели и методы для решения управленческих задач - уметь находить собственные векторы линейных операторов, - то есть состояния равновесия и устойчивости соответствующих экономических моделей Владеть: - классическими методами количественного анализа и моделирования; - навыками применения

математического аппарата
матричного и векторного анализа,
теории линейных операторов для
выработки оптимальных решений
в сфере экономики и управления

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Линейная Алгебра» относится к базовой части блока дисциплин учебного плана образовательной программы по направлению подготовки 38.03.02 - «Менеджмент» и проводится в 1 семестре.

В результате освоения дисциплины «Линейная Алгебра» формируются знания, умения и владения, необходимые для изучения следующих дисциплин: «Прикладная математика в управлении», «Математические модели в управлении», «Математические модели в теории управления и исследование операций», «Методы принятия решений».

2. Структура дисциплины

Общая трудоёмкость дисциплины составляет 4 з.е., 152 академических часа (ов).

Структура дисциплины для очной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Семестр Тип учебных занятий	
		часов
1,2	Лекции	26
1,2	Семинары/лабораторные работы	30
	Всего:	56

Объём дисциплины (модуля) в форме самостоятельной работы обучающихся составляет 70 академических часа(ов).

Структура дисциплины для очно-заочной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
	Лекции	10
	Семинары/лабораторные работы	22
	Всего:	32

Объем дисциплины (модуля) в форме <u>самостоятельной работы обучающихся</u> составляет 94 академических часов.

3. Содержание дисциплины

№	Наименование раздела дисциплины	Содержание
1	Системы линейных уравнений. Метод Гаусса.	Системы линейных уравнений: определение, примеры. Свойства систем уравнений: совместность, несовместность, определенность, неопределенность. Частные и общее решения. Эквивалентность систем, элементарные преобразования, сохраняющие эквивалентность систем. Метод исключения неизвестных (метод Гаусса).
2	Матрицы. Операции над матрицами.	Матрицы. Определение, примеры. Операции над матрицами, особенности алгебры матриц. Матричный полином. Основные свойства операций над матрицами. Некоммутативность умножения матриц. Транспонирование матриц.
3	Определитель матрицы. Миноры.	Определители квадратных матриц: определение и основные свойства. Определитель матрицы 2, 3-го порядка. Правило «треугольников» (правило Звезды). Перестановки. Общая формула для вычисления определителей п-го порядка. Миноры и алгебраические дополнения. Теорема Лапласа.
4	Обратные матрицы. Метод Крамера.	Обратные матрицы. Единственность Обратной матрицы. Свойства Обратной матрицы. Нахождение присоединенной матрицы. Алгоритм построения Обратной матрицы. Решение систем линейных уравнений методом Обратной матрицы. Метод Крамера.
5	Ранг матрицы.	Ранг матрицы. Базисный минор матрицы. Теорема о ранге матрицы и ее следствия. Нахождение ранга ступенчатой матрицы. Нахождение ранга расширенной матрицы системы линейных уравнений. Теорема Кронекера-Капелли.
6	Общий метод решения системы линейных уравнений.	Однородные и неоднородные системы линейных уравнений. Исследование систем линейных уравнений. Решение неопределенных систем линейных уравнений. Базисные и свободные неизвестные. Свойства множеств решений однородных и неоднородных систем. Структура общего решения неоднородной системы.
7	Элементы Аналитической Геометрии.	Аналитическая геометрия на плоскости. Прямоугольная система координат. Расстояние между двумя точками. Деление отрезка в данном отношении. Формула площади треугольника. Уравнение прямой на плоскости (различные формы). Определение угла между двумя прямыми. Условие перпендикулярности,

8	Элементы векторной алгебры	условие параллельности прямых. Косоугольная система координат. Полярная система координат. Уравнение линии (кривой) 2-го порядка на плоскости. Определение вектора. Векторная алгебра. Условие коллинеарности и компланарности векторов. Скалярное произведение векторов. Условие ортогональности векторов. Аналитическая геометрия в пространстве. Уравнение прямой в пространстве (различные формы). Общее уравнение плоскости. Определение угла между двумя плоскостями. Условие перпендикулярности, условие параллельности плоскостей
9	Линейные векторные пространства.	Векторные пространства: определение, примеры. Линейно зависимые системы векторов и их свойства. Линейно независимые системы векторов и их свойства. Базис системы векторов. Ортонормированный базис. Разложение любого вектора по базису. Ранг системы векторов. пмерные линейные пространства. Введение метрики. Свойства скалярного произведения.
10	Линейные операторы.	Линейные преобразования (операторы). Определения, примеры. Связь матриц Линейного оператора в различных базисах. Характеристическое уравнение матрицы Линейного преобразования.
11	Собственные числа и собственные векторы	Собственные значения и собственные вектора матрицы Линейного преобразования. Свойства собственных чисел и собственных векторов матрицы преобразования. Задача о нахождении равновесного вектора цен в Линейной Модели Обмена. Задача о нахождении равновесного вектора национальных доходов в Модели Международной бездефицитной торговли.

4. Образовательные технологии

При реализации программы дисциплины «Линейная алгебра» используются различные методы изложения лекционного материала в зависимости от конкретной темы — подготовительная лекция, лекции с применением техники обратной связи, лекция-беседа. С целью проверки усвоения студентами необходимого теоретического минимума, проводятся экспресс - тесты по лекционному материалу в письменной форме.

Практические занятия предназначены для освоения и закрепления теоретического материала, изложенного на лекциях. Практические занятия направлены на приобретение навыка решения конкретных задач, расчетов на основе имеющихся теоретических и фактических знаний.

На коллоквиумах обсуждаются теоретические вопросы изучаемого курса.

Консультации представляют собой своеобразную форму проведения лекционных занятий, основным содержанием которых является разъяснение отдельных, часто наиболее сложных или практически значимых вопросов изучаемой программы.

Самостоятельная работа студентов направлена на закрепление полученных навыков и на приобретение новых теоретических и фактических знаний, выполняется в читальном зале библиотеки и в домашних условиях, подкрепляется учебно-методическим и информационным обеспечением (учебники, учебно-методические пособия, конспекты лекций, электроннй курс лекций). Практикуется самостоятельная работа по постановке и решению индивидуальных оригинальных прикладных задач.

Для активизации образовательной деятельности с целью формирования и развития профессиональных навыков обучающихся, используются формы проблемного, контекстного, индивидуального и междисциплинарного обучения.

№ п/п	Наименование раздела	Виды учебных занятий	Образовательные технологии	
1	2	3	4	
		Лекция 1	Вводная лекция	
		Лекция 7	Проблемная лекция	
1	Системы линейных	Практическое занятие 1	Развернутая дискуссия	
1	уравнений. Метод Гаусса.	Самостоятельная работа	Подготовка к занятию с использованием электронного курса лекций. Консультирование и проверка домашних заданий посредством электронной почты	
	2 Матрицы. Операции над матрицами.	Лекция 2	Лекция с разбором конкретных ситуаций	
		Практическое занятие 2	Развернутая дискуссия	
2		Самостоятельная работа	Подготовка к занятию с использованием электронного курса лекций. Консультирование и проверка домашних заданий посредством электронной почты	
1 3 1		Лекция 8	Лекция с разбором конкретных ситуаций	
	Элементы Аналитической Геометрии.	Самостоятельная работа	Подготовка к занятию с использованием электронного курса лекций. Консультирование и проверка домашних заданий посредством электронной почты	
4	Собственные числа и собственные векторы	Лекция 11	Развернутая дискуссия	

В период временного приостановления посещения обучающимися помещений и территории РГГУ для организации учебного процесса с применением электронного обучения и дистанционных образовательных технологий могут быть использованы следующие образовательные технологии:

⁻ видео-лекции;

- онлайн-лекции в режиме реального времени;
- электронные учебные пособия, научные издания в электронном виде и доступ к иным электронным образовательным ресурсам;
 - системы для электронного тестирования;
 - консультации с использованием телекоммуникационных средств.

5. Оценка планируемых результатов обучения

5.1. Система оценивания

В процессе изучения дисциплины проводится рейтинговый контроль знаний бакалавров в соответствии с Положением РГГУ о его проведении. Он предполагает учет результатов написания контрольной работы, результатов самостоятельной работы по выполнению домашних заданий, а также степени участия бакалавров в дискуссиях, при обсуждении проблемных вопросов на практических занятиях.

Общая оценка успеваемости студента очной формы обучения по дисциплине «Линейная алгебра» выставляется за совокупный результат:

активного участия студента в практических занятиях, регулярного выполнения домашних заданий, написания экспресс - тестов по лекционному материалу (максимальное количество баллов -13);

выполнения Контрольной работы №1 (максимальное количество баллов – 20);

выполнения Контрольной работы №2 (максимальное количество баллов – 12);

подготовленности к Коллоквиуму по теоретическому материалу в письменно-устной форме (максимальное количество баллов - 15);

выполнения Контрольной работы №3 (максимальное количество баллов – 40);

Вид работы	Баллы
Текущий контроль:	
Активность на семинарах, выполнение домашнего задания. Экспресс - тесты по лекционному материалу.	13 баллов
Контрольная работа №1	20 баллов
Контрольная работа №2	12 баллов
Коллоквиум по теоретическому материалу.	15 баллов
Промежуточная аттестация:	40 баллов
(Контрольная работа №3)	
Итого за семестр	100 баллов
экзамен	

Максимально возможная сумма баллов, набираемых студентом в течение семестра, составляет - 100 баллов.

Контрольная работа №1, Контрольная работа №2 и Контрольная работа №3 (текущий контроль) содержат типовые задания по ключевым темам дисциплины и проводятся в течение семестра после изучения соответствующего теоретического материала.

Каждый студент получает индивидуальный вариант Контрольных работ.

Коллоквиум по теоретическому материалу проводится в конце Семестра.

В случае не аттестации студента по курсу пересдача дисциплины осуществляется в форме традиционного экзамена, на котором студенту предлагается индивидуальный Вариант каждой из Контрольных работ семестра и Тест по лекционному материалу.

Экзамен считается сданным, если решено более 2-х задач и получен ответ на вопрос Теста.

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная	Тролиционноя николо		Шкала
шкала	Традиционная шкала		ECTS
95 - 100	0.000		A
83 – 94	отлично		В
68 - 82	хорошо	зачтено	С
56 – 67	VIIOD HOTDOWNTON NO		D
50 – 55	удовлетворительно		E
20 - 49	HAVIA D HATTO CONTROLL HA	HO DOMESTIC	FX
0 – 19	неудовлетворительно	не зачтено	F

5.2. Критерии выставления оценки по дисциплине

Баллы/	Оценка по	Критерии оценки результатов обучения по	
Шкала	дисциплине	дисциплине	
ECTS			
100-83/	«отлично»/	Выставляется обучающемуся, если он глубоко и	
A,B	«зачтено	прочно усвоил теоретический и практический	
	(отлично)»/	материал, может продемонстрировать это на занятиях	
	«зачтено»	и в ходе промежуточной аттестации.	
		Обучающийся исчерпывающе и логически стройно	
		излагает учебный материал, умеет увязывать теорию с	
		практикой, справляется с решением задач	
		профессиональной направленности высокого уровня	
		сложности, правильно обосновывает принятые	
		решения.	
		Свободно ориентируется в учебной и	
		профессиональной литературе.	
		Оценка по дисциплине выставляются обучающемуся с	
		учётом результатов текущей и промежуточной	
		аттестации.	
		Компетенции, закреплённые за дисциплиной,	
		сформированы на уровне – «высокий».	
82-68/	«хорошо»/	Выставляется обучающемуся, если он знает	
C	«зачтено	теоретический и практический материал, грамотно и по	
	(хорошо)»/	существу излагает его на занятиях и в ходе	
	«зачтено»	промежуточной аттестации, не допуская существенных	
		неточностей.	
		Обучающийся правильно применяет теоретические	
		положения при решении практических задач	
		профессиональной направленности разного уровня	
		сложности, владеет необходимыми для этого навыками	
		и приёмами.	
		Достаточно хорошо ориентируется в учебной и	
		профессиональной литературе.	
		Оценка по дисциплине выставляются обучающемуся с	
		учётом результатов текущей и промежуточной	
		аттестации.	
	l		

Баллы/ Шкала ECTS	Оценка по дисциплине	Критерии оценки результатов обучения по дисциплине
		Компетенции, закреплённые за дисциплиной, сформированы на уровне – «хороший».
67-50/ D,E	«удовлетворительно»/ «зачтено (удовлетворительно)»/ «зачтено»	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	«неудовлетворите льно»/ не зачтено	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции на уровне «достаточный», закреплённые за дисциплиной, не сформированы.

5.3. Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине.

При оценивании экспресс-теста и участия в дискуссии на практическом занятии учитываются:

- степень раскрытия темы выступления (0-2 балла)
- знание содержания обсуждаемых проблем, умение использовать ранее изученный теоретический материал и терминологию (0-2 балла).

Контрольные работы (текущий контроль) содержат типовые задания по ключевым практическим аспектам укрупненных тематик дисциплины и проводятся в течение семестра после их изучения.

Контрольная работа №1 и №3 содержат по 5 заданий. Контрольная работа №2 содержат 3 задания.

При проведении Коллоквиума студент должен ответить на 2 вопроса теоретического характера.

При оценивании ответа на вопрос теоретического характера учитывается:

- теоретическое содержание освоено не полностью, знание материала носит фрагментарный характер, имеются явные ошибки в ответе (до 5 баллов);
- теоретическое содержание освоено частично, допущено не более двух-трех недочетов (до 10 баллов);
- теоретическое содержание освоено почти полностью, допущено не более одного-двух недочетов (до 15 баллов);

Перечень тем Контрольных работ (в письменной форме) по курсу дисциплины «Линейная алгебра».

Контрольная работа №1.

Вычисление матричного полинома.

Вычисление определителей.

Решение определенных систем линейных уравнений 3-го порядка

- а) методом Гаусса
- в) методом нахождения Обратной матрицы.
- с) методом Крамера.

Контрольная работа №2

Матричные уравнения.

Исследование систем линейных уравнений.

Решение неопределенных систем линейных уравнений.

Контрольная работа №3

- 1. Собственные значения Матрицы Линейного преобразования.
- 2. Собственные векторы Матрицы Линейного преобразования.
- 3. Базис системы векторов. Линейная зависимость векторов.
- 4. Уравнение прямой на плоскости (различные формы). Определение угла между двумя прямыми. Условие перпендикулярности, параллельности прямых.
- 5. Векторная Алгебра. Расстояние между двумя точками. Деление отрезка в данном отношении. Формула площади треугольника.

Перечень примерных вариантов Контрольных работ по курсу дисциплины «Линейная алгебра».

Контрольная работа №1

1. Вычислить матричный полином P(A), где $p(x) = x^2 - 3x + 9$,

$$A = \begin{pmatrix} -2 & 3 \\ 5 & -1 \end{pmatrix}.$$

2. Решить систему уравнений методом Гаусса (исключения неизвестных)

$$\begin{cases} 3x_1 + 4x_2 + x_3 = 5 \\ -x_1 + 2x_2 + 3x_3 = 5 \\ 5x_1 - x_2 - 2x_3 = 5 \end{cases}$$

- 3. Посчитать Определитель матрицы системы из п.4
 - а) по Правилу Звезды (Правилу Треугольников)
 - в) разложением Определителя по строке (столбцу)
- 4. Решить систему уравнений с помощью обратной матрицы (Выписать Определитель системы, все Алгебраические дополнения, Присоединенную матрицу системы).

$$\begin{cases}
-x_1 + x_2 + 2x_3 = 3 \\
4x_1 - 5x_2 + 7x_3 = 15 \\
2x_1 - 3x_2 + 6x_3 = 11
\end{cases}$$

5. Решить систему уравнений из п.4 по правилу Крамера

Контрольная работа №2

1. Решить матричное уравнение:

$$X \begin{pmatrix} -3 & -2 \\ 8 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$

2. Исследовать систему линейных уравнений на совместность и неопределенность, не решая ее.

$$\begin{cases} x_1 - 2x_2 + x_3 = -1 \\ 3x_1 + x_2 - 4x_3 = 11 \\ 4x_1 - x_2 - 3x_3 = 8 \end{cases}$$

3. Исследовать систему линейных уравнений. Если она совместна, указать базисный минор, базисные и свободные переменные. Решить систему методом Крамера. Выписать общее и одно частное решение.

$$\begin{cases} 4x_1 + x_2 - x_3 + 3x_4 = 8 \\ x_1 - 3x_2 + 3x_3 - x_4 = 5 \\ 3x_1 + 4x_2 - 4x_3 + 4x_4 = 3 \end{cases}$$

Контрольная работа №3

1. Найти корни характеристического уравнения, т.е. собственные числа матрицы

$$A = \begin{pmatrix} 6 & 5 \\ 3 & 4 \end{pmatrix}$$

- 2. Найти собственные векторы матрицы А из п.1
- 3. Определить, является ли данная совокупность векторов линейно зависимой. Найти базис данной системы векторов и разложение каждого из векторов данной совокупности в этом базисе.

$$\vec{a}_1 = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix}.$$

4. Найти уравнение прямой, проходящей через точку пересечения прямых L1 и L2. и параллельной (перпендикулярности) прямой L3. Найти угол между прямыми L1 и L2.

L1:
$$x - 4y + 1 = 0$$

L2: $2x + y - 7 = 0$

L3:
$$3x + 2y - 5 = 0$$

5. В треугольнике ABC с вершинами A (1, 3), B(9, -3), C(-2, -1) найти: длины векторов AB и AC, длину медианы AM, уравнение высоты AR, уравнение биссектрисы AD, площадь треугольника ABC.

Перечень Контрольных вопросов по курсу дисциплины «Линейная алгебра»

Часть І.

- 1. Системы линейных уравнений: определение, примеры. Свойства систем уравнений: совместность, несовместность, определенность, неопределенность.
- 2. Геометрическая интерпретация существования 3-х типов решений систем двух линейных уравнений с двумя переменными.
- 3. Эквивалентность систем, элементарные преобразования систем. Примеры.
- 4. Матрицы, операции над ними и их свойства.
- 5. Особенности операции умножения матриц.
- 6. Транспонирование матриц. Запись системы линейных уравнений в компактной матричной форме.
- 7. Определитель матрицы. Общая формула для вычисления определителей.
- 8. Свойства определителя.
- 9. Миноры и алгебраические дополнения, их связь с определителем матрицы.
- 10. Теорема Лапласа.
- 11. Необходимые и достаточные условия существования обратной матрицы.
- 12. Алгоритм нахождения обратной матрицы.
- 13. Понятие ранга матрицы. Нахождение ранга матрицы.
- 14. Свойства ранга матрицы.
- 15. Метод исключения переменных Гаусса.
- 16. Метод Крамера.
- 17. Теорема Кронекера-Капелли.
- 18. Общее решение системы линейных уравнений. Базисные и свободные переменные. Частные решения.

Часть II.

- 19. Прямоугольная система координат.
- 20. Расстояние между двумя точками.
- 21. Деление отрезка в данном отношении.
- 22. Формула площади треугольника.
- 23. Уравнение прямой на плоскости (различные формы).
- 24. Уравнение прямой в пространстве (различные формы).
- 25. Определение угла между двумя прямыми. Условие перпендикулярности, условие параллельности прямых.
- 26. Общее уравнение плоскости.
- 27. Понятие вектора, определение, примеры.
- 28. Операции над векторами. Скалярное произведение векторов.
- 29. Коллинеарность векторов, компланарность векторов. Базис на плоскости и в пространстве.
- 30. Разложение любого вектора по базису.
- 31. Евклидово пространство. Введение метрики.
- 32. Свойства скалярного произведения векторов.
- 33. Линейные операторы. Матрица Линейного преобразования.
- 34. Собственные значения и собственные векторы Линейных операторов.
- 35. Свойства собственных чисел и собственных векторов матрицы преобразования.

36. Характеристическое уравнение матрицы Линейного преобразования.

Часть III.

- 37. Однородные системы линейных уравнений.
- 38. Линейно зависимые системы векторов и их свойства.
- 39. Линейно независимые системы векторов и их свойства.
- 40. Линейные векторные пространства: определение, примеры.
- 41. Базис и размерность п-мерного Линейного Пространства. Ортонормированный базис.
- 42. Задача о нахождении равновесного вектора цен в Линейной Модели Обмена.
- 43. Задача о нахождении равновесного вектора национальных доходов в Модели Международной бездефицитной торговли.

Перечень экспресс-тестов по лекционному материалу дисциплины «Линейная алгебра»

Тест 1

- 1. Записать Систему т Линейных Уравнений с п неизвестными в общем виде.
- 2. Перечислить названия 3-х типов Систем Линейных Уравнений (СЛУ) в зависимости от соответствующего каждому типу множества решений.
- 3. Перечислить 4 вида эквивалентных преобразований СЛУ.

Тест 2

- 1. Написать матрицы $A = (a_{ij})_m^k$ и $B = (b_{ij})_k^n$ в общем виде. Если C = A * B,
 - то каковы размеры матрицы С? Написать выражение для элемента \mathcal{C}_{ij}
 - а) через знак суммирования \sum ; в) более подробно, без знака суммирования.
- 2. Как для данной матрицы $A = (a_{ij})_m^k$ в общем виде будет выглядеть матрица A^T ? Каковы ее размеры? Выписать те 4 свойства (из 18 Свойств операций над матрицами), где встречается операция транспонирования.
- 3. Записать Систему Линейных Уравнений для m=n=3 в обычном виде. Выписать все матрицы A, X, B, соответствующие матричной форме записи СЛУ: A * X = B

Тест 3

- 1. Написать выражение для определителя матрицы второго порядка $\Delta = |A|$ в общем виде.
- 2. Схематично изобразить Правило Звезды для вычисления определителя матрицы третьего порядка $\Delta = |A|$
- 3. Дать Определение Минора $\,M_{ij}\,$ матрицы n-го порядка $\,A\,$
- 4. Написать формулу Алгебраического Дополнения A_{ij} матрицы n-го порядка A
- 5. Написать выражение для вычисления определителя матрицы третьего порядка $\Delta = |A_3|$ по Теореме Лапласа, то есть разложение по любой строке или любому столбцу: а) либо в общем виде
 - б) либо для любого (уникального) численного примера.

- 1. Для системы линейных уравнений AX = B, $|A| \neq 0$ выписать через алгебраические дополнения A_{ij} присоединенную матрицу A^* . Выписать формулы обратной матрицы A^{-1} , решения X .
- 2. Для системы линейных уравнений третьего порядка AX=B выписать по методу Крамера выражения для Δ_i , i=1,2,3 и решение системы линейных уравнений $X=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ через Δ_i .
- 3. Дать Определение ранга матрицы (через миноры).
- 4. Чему равен ранг ступенчатой матрицы?
- 5. Дать формулировку Теоремы Кронекера-Капелли для системы линейных уравнений AX = B

Тест 5

- 1. Даны две точки $A(x_1,y_1),\ B(x_2,y_2)$. Написать выражение для расстояния $d=|\overline{AB}|$.
- 2. Написать уравнение прямой, проходящей через точку $M_{_0}(x_{_0},y_{_0})\;$ и имеющей угловой коэффициент k .
- 3. Написать Общее уравнение прямой на плоскости.
- 4. Написать условие параллельности и перпендикулярности на плоскости двух прямых, имеющих угловые коэффициенты k_1 и k_2
- 5. На отрезке AB, $A(x_1,y_1)$, $B(x_2,y_2)$ дана точка C, такая, что $\frac{AC}{BC} = \lambda$ Найти координаты точки C (x,y).

Тест 6

- 1. Написать уравнение прямой на плоскости (не $| \ | \ OX$, не $| \ | \ OY$), проходящей через две точки $A(x_1,y_1),\ B(x_2,y_2)$.
- 2. Даны две точки $A(x_1, y_1), B(x_2, y_2)$. Координаты вектора $\vec{a} = A\vec{B} = ?$
- 3. Даны векторы \vec{a} , \vec{b} . Схематично изобразить, как определяется: а) сумма векторов $\vec{c} = \vec{a} + \vec{b}$ в) разность векторов $\vec{d} = \vec{a} - \vec{b}$
- 4. Дать определение коллинеарности двух векторов \vec{a} , \vec{b} . Дать определение базиса на плоскости.
- 5. Дать определение компланарности трех векторов \vec{a} , \vec{b} , \vec{c} . Дать определение базиса в пространстве.

Тест 7

1. Написать уравнение плоскости, проходящей через точку $M_0(x_0,y_0,z_0)$ и

перпендикулярной вектору нормали $\vec{n}(A,B,C)$.

- 2. Написать Общее уравнение плоскости.
- 3. Написать условия параллельности и перпендикулярности 2-х плоскостей:

$$A_1x + B_1y + C_1z + D_1 = 0$$
 в пространстве. $A_2x + B_2y + C_2z + D_2 = 0$

- 4. Дать Определение Собственного вектора \vec{X} и Собственного значения λ Линейного Преобразования, заданного матрицей A .
- 5. Дать Определение Характеристического уравнения для матрицы A . Как связаны Характеристическое уравнение и Собственные значения матрицы A ?

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Список источников и литературы

Литература основная

- 1. Высшая математика для экономистов: учебник для студентов, обучающихся по экономическим специальностям / Под ред. проф. Кремера Н.Ш. М.: ЮНИТИ-ДАНА, 2006-497 с.
- 2. Лепе Н.Л., Манаенкова Н. И. Лекции по линейной алгебре : учебное пособие; Федер. гос. бюджетное образоват. учреждение высш. проф. образования "Рос. гос. гуманитарный ун-т" (РГГУ). Москва : Тровант, 2016. 247 с.
- 3. Краснова С.А., Уткин В.А. Основы математического анализа: Учебное пособие /Под ред. В.В. Кульбы. М.: РГГУ, 2010 558 с.
- 4. Прасолов, В. В. Задачи и теоремы линейной алгебры: Учебное пособие / Прасолов В.В. Москва: МЦНМО, 2016. 576 с. https://new.znanium.com/catalog/product/958629
- 5. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 6. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Дополнительная

- 1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. 3-е изд. М.: ЮНИТИ-ДАНА, 2017. 479 с. https://new.znanium.com/catalog/product/1028709
- 2. Курс высшей математики для экономистов: учебник / под ред. Р.В. Сагитова. Москва: ИНФРА-М, 2019. 647 с. https://new.znanium.com/catalog/product/989794
- 3. *Малугин, В. А.* Линейная алгебра для экономистов. Учебник, практикум и сборник задач: для среднего профессионального образования / В. А. Малугин, Я. А. Рощина. Москва: Издательство Юрайт, 2019. 478 с. https://urait.ru/bcode/437403

6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Лекции по линейной алгебре [Электронный ресурс] : учебное пособие для бакалавриата по направлению № 080200 Менеджмент, № 080400 Управление персоналом / Минобрнауки России, Федер. гос. бюджетное образоват. учреждение высш. проф. образования "Рос. гос. гуманитарный ун-т" (РГГУ), Ин-т экономики, упр. и права, Фак. упр., Каф. моделирования в экономике и упр., [сост.: Н. Л. Лепе, Н. И. Манаенкова ; отв. ред. В. В. Кульба]. Москва : РГГУ, 2014. 202 с. Режим доступа: http://elib.lib.rsuh.ru/elib/000009509. Загл. с экрана. ISBN 978-5-7281-1699-8.
- 2. Аналитическая геометрия [Электронный ресурс] : учеб.-метод. комплекс : для бакалавриата по направлению 080200 Менеджмент / М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Рос. гос. гуманитарный ун-т", Ин-т экономики, упр. и права, Фак. упр., Каф. моделирования в экономике и упр.; [сост. Н. И. Манаенкова; отв. ред. Н. Л. Лепе]. М.: РГГУ, 2012. -34 с.;

- 20 см. Режим доступа : http://elib.lib.rsuh.ru/elib/000005265. Загл. с экрана. Библиогр.: с. 20-21.
- 3. Линейная алгебра [Электронный ресурс] : учеб.-метод. комплекс : для бакалавриата по направлению 080200 Менеджмент / М-во образования и науки Рос. Федерации, Федер. гос. бюджет. образоват. учреждение высш. проф. образования "Рос. гос. гуманитарный унт", Ин-т экономики, упр. и права, Фак. упр., Каф. моделирования в экономике и упр. ; [сост. Н. И. Манаенкова ; отв. ред. Н. Л. Лепе]. М. : РГГУ, 2012. 40 с. ; 20 см. Режим доступа : http://elib.lib.rsuh.ru/elib/000005266.pdf. Загл. с экрана. Библиогр.: с. 21-22.

Перечень БД и ИСС

N_{Ω}/Π	Наименование			
	Международные реферативные наукометрические БД, доступные в рамка			
	национальной подписки в 2019 г.			
	Web of Science			
	Scopus			
	Профессиональные полнотекстовые БД, доступные в рамках национальной			
	подписки в 2019 г.			
	Журналы Cambridge University Press			
	ProQuest Dissertation & Theses Global			
	SAGE Journals			
	Журналы Taylor and Francis			
	Электронные издания издательства Springer			
	Профессиональные полнотекстовые БД			
	JSTOR			
	Издания по общественным и гуманитарным наукам			
	Компьютерные справочные правовые системы			
	Консультант Плюс,			
	Гарант			

6.3. Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7. Материально-техническое обеспечение дисциплины

В качестве материально-технического обеспечения дисциплины необходимы:

- для проведения лекций академическая аудитория соответствующих размеров с доской (возможно, дополнительно оборудованная проектором), с микрофоном и колонками;
 - для проведения семинаров стандартная аудитория с доской.
- наличие доски достаточного размера необходимо для всех типов занятий: для лекций, семинаров, практических занятий.

Перечень ПО

№п	Наименование ПО	Производитель	Способ распространения
$/\Pi$			(лицензионное или свободно
			распространяемое)
1	Microsoft Office 2016	Microsoft	лицензионное
2	Windows 10 Pro	Microsoft	лицензионное

8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением или могут быть заменены устным ответом; обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; письменные задания оформляются увеличенным шрифтом; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих: лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования; письменные задания выполняются на компьютере в письменной форме; экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла.
 - для глухих и слабослышащих: в печатной форме, в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих: устройством для сканирования и чтения с камерой SARA CE; дисплеем Брайля PAC Mate 20; принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих: автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих; акустический усилитель и колонки;
- для обучающихся с нарушениями опорно-двигательного аппарата: передвижными, регулируемыми эргономическими партами СИ-1; компьютерной техникой со специальным программным обеспечением.

9. Методические материалы

9.1. Планы семинарских / практических / лабораторных занятий

Практические занятия по дисциплине «Линейная алгебра» проводятся для бакалавриата дневной формы обучения по направлению подготовки 38.04.02 «Менеджмент»

Цель практических занятий — способствовать лучшему усвоению и закреплению теоретических знаний, полученных из лекционного курса и изучения Литературы. Только активная самостоятельная работа студентов в ходе изучения дисциплины позволяет получить и закрепить навык использования изучаемых математических методов; применять классические математические методы для решения практических задач экономико-управленческого содержания.

Практические занятия проводятся в форме обзора новых теоретических понятий по данной теме и разбора решений типовых задач. Разбор Домашнего задания, результаты Контрольных работ позволяют выявить пробелы в знаниях и оценить уровень освоения материала.

<u>Практическое занятие 1</u> Системы линейных уравнений. Метод Гаусса. (2 ч.) Вопросы для изучения

- 1. Системы линейных уравнений 2, 3, n-го порядка. Метод Гаусса решения систем линейных уравнений. 3 типа Систем линейных уравнений.
- 2. Пример Постановки задачи. Сведение текстовой задачи (*Задача о фермере, 3 варианта*) к системам линейных уравнений 3 типов.
- 3. Приведение матрицы системы линейных уравнений к ступенчатому виду.

Практические задания

- 1. Метод Гаусса. Разбор и решение задачи № 2.1.37.
- 2. Постановка и решение Задачи о фермере:

Задача о фермере.

Вариант 1:

Фермер вложил в прошлом году в зерноводство, животноводство и овощеводство всего 10 млн.д.е. и получил 780 тыс.д.е. прибыли. В текущем году он собирается увеличить вложения в зерноводство в 2 раза, в животноводство в 3 раза, а вложения в овощеводство оставить на прошлогоднем уровне. На все это фермер выделяет 22 млн.д.е. Какую прибыль собирается получить фермер в текущем году, если зерноводство приносит 10% прибыли на вложенные средства, животноводство 8% и овощеводство 6%?

Вариант 2:

Рассмотрим задачу из примера 1 со следующими изменениями:

зерноводство приносит 8% прибыли на вложенные средства, животноводство 10% и овощеводство 6%.

Вариант 3:

Рассмотрим задачу из примера 2 со следующими изменениями:

Фермер получил 840 тыс.д.е. прибыли

3. Приведение матрицы системы линейных уравнений к ступенчатому виду. Разбор и решение задач №№1.1.27, 1.1.28 4. Домашнее Задание: №№ 1.1.79, 1.1.80, 2.1.41

Список источников и литературы

Основная литература

- 7. 1 Рудык, Б. М. Линейная алгебра: учеб. пособие / Б.М. Рудык. М.: ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 8. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Практическое занятие 2 Матрицы. Операции над матрицами. (2 ч.)

Вопросы для изучения

- 1. Алгоритм приведения матрицы к ступенчатому виду.
- 2. Матрицы. Операции над матрицами. Правила умножения матриц.
- 3. Матричный полином. Транспонирование матриц.

Практические задания

- 1. Приведение матрицы к ступенчатому виду. Разбор и решение задач Домашнего задания: №№ 1.1.79, 1.1.80
- Операции над матрицами. Разбор и решение задач №№ 1.1.1, 1.1.2, 1.1.11, 1.1.7, 1.1.21
- 3. Домашнее Задание: №№ 1.1.3, 1.1.5, 1.1.53, 1.1.17, 1.1.24, 1.1.25

Список источников и литературы

Основная литература

- 9. 1 Рудык, Б. М. Линейная алгебра: учеб. пособие / Б.М. Рудык. М.: ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 10. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Практическое занятие 3 Определитель матрицы. Миноры. (2 ч.)

Вопросы для изучения

- 1. Свойства умножения матриц. Примеры отсутствия коммутативности умножения матриц.
- 2. Определитель матрицы 2, 3, n-го порядка. Правило «треугольников» (правило Звезды). Миноры, Теорема Лапласа. Нахождение Присоединенной матрицы. Практические задания
- 1. Умножение матриц. Разбор и решение задач Домашнего задания: №№ 1.1.5,

- 1.1.53, 1.1.17, 1.1.24, 1.1.25.
- 2. Вычисление Определителей, Миноров, построение Присоединенной матрицы. Разбор и решение задач №№ 1.2.1, 1.2.20, 1.2.13, 1.2.24, 1.2.25, 1.4.1
- 3. Домашнее Задание: №№ 1.2.4, 1.2.6, 1.2.22, 1.2.23, 1.2.26, 1.2.29, 1.4.38, 1.4.9 Список источников и литературы

Основная литература

- 11. 1 Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 12. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Практическое занятие 4 Обратные матрицы. Метод Крамера.

(Продолжительность - 2 часа)

Вопросы для изучения

- 1. Вычисление Алгебраических дополнений.
- 2. Построение Присоединенной матрицы, Обратной матрицы.
- 3. Решение систем линейных уравнений методом Обратной матрицы.
- 4. Правило Крамера.

Практические задания

- 1. Вычисление Определителей, Миноров. Разбор и решение задач Домашнего задания: №№ 1.2.4, 1.2.6, 1.2.22, 1.2.23, 1.2.26, 1.2.29.
- 2. Построение Обратной матрицы. Разбор и решение задач Домашнего задания №№ 1.4.38, 1.4.9
- 3. Решение систем линейных уравнений методом Обратной матрицы, методом Крамера. Разбор и решение задачи №№ 2.2.2
- 4. Домашнее Задание: №№ 1.4.4, 1.4.39, 1.4.34, 2.2.11, 2.2.22, 2.2.23

Список источников и литературы

Основная литература

- 13. 1. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 14. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Практическое занятие 5 Обратные матрицы. Метод Крамера. (2 ч.)

Вопросы для изучения

1. Решение систем линейных уравнений методом Обратной матрицы.

- 2. Решение систем линейных уравнений методом Крамера.
- 3. Решение Матричных уравнений.

Практические задания

- 1. Построение Обратной матрицы. Разбор и решение задач Домашнего задания: №№ 1.4.4, 1.4.39.
- 2. Разбор и решение систем линейных уравнений методом Обратной матрицы, методом Крамера в задачах Домашнего задания: №№ 1.4.34, 2.2.22, 2.2.23
- 3. Решение Матричных уравнений. Разбор и решение задачи №№ 1.4.27.
- 4. <u>Домашнее Задание:</u> №№ 1.4.10, 1.4.11, 1.4.29, 1.4.30, Варианты Контрольных работ.

Список источников и литературы

Основная литература

- 15. 1 Рудык, Б. М. Линейная алгебра: учеб. пособие / Б.М. Рудык. М.: ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 16. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 6</u> Матрицы. Определители матриц. Метод Гаусса, метод Обратной матрицы, метод Крамера решения систем линейных уравнений. (2 ч.)

Вопросы для изучения

Контрольная работа №1.

Вычисление матричного полинома.

Вычисление определителей.

Решение определенных систем линейных уравнений 3-го порядка

- а) методом Гаусса
- в) методом нахождения Обратной матрицы
- с) методом Крамера.

Практические задания

- 1. Решение индивидуального варианта Контрольной работы №1 в письменной форме.
- 2. Домашнее Задание: Решение невыполненных №№ Контрольной работы № 1; решение невыполненных задач Домашнего задания к занятиям 1, 2, 3, 4, 5. Список источников и литературы

Основная литература

- 17. 1. Рудык, Б. М. Линейная алгебра: учеб. пособие / Б.М. Рудык. М.: ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 18. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Практическое занятие 7 Ранг матрицы. (2 ч.)

Вопросы для изучения

- 1. Решение матричных уравнений.
- 2. Нахождение ранга ступенчатой матрицы. Теорема Кронекера Капелли.
- 3. Нахождение ранга расширенной матрицы системы линейных уравнений.
- 4. Разбор типичных ошибок задач Контрольной работы № 1
- Разбор и индивидуальное исправление ошибок в задачах Контрольной работы №1
 Практические задания
- 1. Решение Матричных уравнений. Разбор и решение Домашнего задания: №№ 1.4.10, 1.4.11, 1.4.29, 1.4.30
- 2. Нахождение ранга ступенчатой матрицы в задачах №№ 1.1.79, 1.1.80
- 3. Нахождение ранга расширенной матрицы системы линейных уравнений в Задаче о фермере (3 варианта). Исследование совместности систем линейных уравнений.
- 4. Домашнее Задание: № 2.1.47, 1.1.80.

Список источников и литературы

Основная литература

- 19. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 20. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 8</u> Общий метод решения системы линейных уравнений. (2 ч.) Вопросы для изучения

- 1. Исследование совместности систем линейных уравнений.
- 2. Нахождение общих и частных решений системы линейных уравнений. Эквивалентность общих решений, соответствующих различным базисным минорам матрицы системы линейных уравнений.

Практические задания

- 1. Исследование совместности систем линейных уравнений. Разбор и решение задачи Домашнего задания: № 2.1.47.
- 2. Нахождение общего решения системы линейных уравнений в Задаче о фермере (3-й вариант, неопределенная СЛУ).
- 3. Нахождение частного решения системы линейных уравнений в Задаче о фермере (3-й вариант, неопределенная СЛУ).
- 4. Домашнее Задание: с.87-90: № 2 всех Вариантов Контрольных работ.

Список источников и литературы

Основная литература

- 21. 1. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 22. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 9</u> Ранг матрицы. Общий метод решения системы линейных уравнений. (2 ч.)

Вопросы для изучения

Контрольная работа №2

Матричные уравнения.

Исследование систем линейных уравнений.

Решение неопределенных систем линейных уравнений.

Практические задания

- 1. Решение индивидуального варианта Контрольной работы №2 в письменной форме.
- 2. Домашнее Задание: Решение невыполненных №№ Контрольной работы № 2; решение невыполненных задач Домашнего задания к Практическим занятиям 7, 8, 9.

Практическое занятие 10 Элементы Аналитической Геометрии. (2 ч.)

Вопросы для изучения

- 1. Метод координат на прямой, плоскости и в пространстве. Координаты точки. Длина отрезка. Площадь треугольника.
- 2. Задача о делении отрезка в данном отношении.
- 3. Различные виды уравнений прямой. Угол между прямыми. Условие параллельности и перпендикулярности прямых.

Практические задания

- 1. Длина отрезка. Площадь треугольника. Деление отрезка в данном отношении. Координаты биссектрисы и медианы. Разбор и решение задач №№ <u>4</u>.1.4, 4.1.7
- 2. Уравнения прямых. Пересечение, параллельность, перпендикулярность прямых. Разбор и решение задач №№ 4.2.52, 4.2.57
- 3. Домашнее Задание: №№ 4.1.5, 4.1.10 4.2.56, 4.2.58.

Список источников и литературы

Основная литература

- 23. 1. Рудык, Б. М. Линейная алгебра: учеб. пособие / Б.М. Рудык. М.: ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 24. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 11</u> Элементы Векторной Алгебры. (2 ч.)

Вопросы для изучения

- 1. Метод координат на плоскости: вычисление длин сторон треугольника, медианы, высоты, биссектрисы. Нахождение уравнений медианы, высоты, биссектрисы, сторон треугольника.
- 2. Векторная алгебра. Сумма, разность векторов. Произведение вектора на число.
- 3. Условие коллинеарности и компланарности векторов. Скалярное произведение векторов. Условие ортогональности векторов.

Практические задания

1. Использование методов аналитической геометрии в задачах Домашнего задания: N
ot N
ot 4.1.5, 4.1.10 4.2.56, 4.2.58.

- 2. Направленные отрезки. Сумма, разность векторов. Произведение вектора на число. Разбор и решение задач №№ 3.1.1, 3.1.2.
- 3. Скалярное произведение векторов. Условие ортогональности и коллинеарности векторов. Разбор и решение задачи № 3.2.1
- 4. Домашнее Задание: №№ 3.1.3, 3.1.8 3.2.3.

Варианты Контрольных работ: Вар. 1 №2, №3; Вар.2 №1, №2

Список источников и литературы

Основная литература

25. 1. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. - М. : ИНФРА-М, 2019. - 318 с. https://new.znanium.com/catalog/product/1010102

26. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. — Москва: ИНФРА-М, 2019. — 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 12</u> Линейные векторные пространства. (2 ч.) Вопросы для изучения

- 1. Операции над векторами.
- 2. Линейная зависимость и линейная независимость векторов. Базис системы векторов.
- 3. Разложение векторов по данному базису. Координаты вектора.

Практические задания

- 1. Использование методов векторной алгебры в задачах Домашнего задания: №№ 3.1.3, 3.1.8 3.2.3
- 2. Разбор Вариантов Контрольных работ: Вар. 1 №2, №3; Вар.2 №1
- 3. Разбор задачи на нахождение координат векторов в базисе системы векторов: *Задача о разложении вектора*:

Определить, является ли данная совокупность векторов линейно зависимой. Найти базис данной системы векторов и разложение каждого из векторов данной совокупности в этом базисе.

$$\vec{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} -4 \\ 5 \\ 5 \end{pmatrix}.$$

4. <u>Домашнее Задание:</u> №№ Варианты Контрольных работ: Вар. 3 №3; Вар.4 №1, №2; № 1) из Задания к практическим занятиям №№ 13-14

Задание к Практическим занятиям №№ 14-15

1) Определить, является ли данная совокупность векторов линейно зависимой. Найти базис данной системы векторов и разложение каждого из векторов данной совокупности в этом базисе.

$$\vec{a}_1 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} 10 \\ 22 \\ 42 \end{pmatrix}.$$

2) Найти собственные числа и собственные векторы матрицы

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$

3) Показать, что матрицы

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
 и $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ - подобны.

- 4) Найти собственные векторы матрицы В.
- 5) Показать, на примере матриц А, В, что
 - А) сумма собственных значений матрицы равна сумме ее диагональных членов.
 - В) произведение собственных значений матрицы равно ее Определителю.
- 6) Показать на примере матрицы A, что, если матрица A_n имеет п попарно различных собственных чисел, ее ранг равен числу отличных от нуля собственных значений матрицы.

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 7 \\ 1 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix}$$

- 7) Показать, что собственные векторы матрицы $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$ линейно независимы.
- 8) Показать на примере матрицы $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$ что, если матрица A_n имеет п различных собственных чисел, справедливо равенство: $V^{-1}A_n \ V = \Lambda$, где V матрица, столбцами которой служат п собственных векторов матрицы A_n , Λ диагональная матрица, составленная из всех собственных чисел матрицы A_n .

Здесь
$$\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
, где λ_1 , λ_2 - собственные значения матрицы **A**

9) Задана структурная матрица торговли трех стран:

$$A = \begin{pmatrix} 1/4 & 2/6 & 4/12 \\ 2/4 & 1/6 & 3/12 \\ 2/4 & 1/6 & 1/12 \\ 1/4 & 3/6 & 5/12 \end{pmatrix}$$

Требуется найти вектор национальных доходов этих трех стран, Обеспечивающий бездефицитную торговлю между ними.

Список источников и литературы

Основная литература

- 27. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 c. https://new.znanium.com/catalog/product/1010102
- 28. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 13</u>. Линейные операторы. (2 ч.) Вопросы для изучения

- 1. Линейные операторы.
- 2. Характеристическое уравнение Матрицы Линейного преобразования.
- 3. Собственные значения матрицы корни характеристического уравнения.

Практические задания

- 1. Повторение задачи на нахождение координат векторов в базисе системы векторов. Разбор и решение задачи № 1) из Задания к практическим занятиям №№ 14-15
- 2 Вычисление собственных значений матриц 2-го, 3-го порядка. Разбор и решение задач №№ 2), 3), 5) из Задания к практическим занятиям №№ 13-14
- 3. Нахождение и графическое построение собственных векторов, соответствующих конкретным собственным значениям.
- 4. Домашнее Задание: №№ 4), 5), 6), 7) из Задания к практическим занятиям №№ 13-14

Список источников и литературы

Основная литература

- **1** Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- **2** Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

3 Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 14</u> Собственные значения и собственные векторы. (2 ч.) Вопросы для изучения

- 1. Множество собственных векторов Матрицы Линейного преобразования.
- 2. Линейная модель обмена.
- 3. Модель международной торговли.

Практические задания

- 2. Вычисление собственных значений. Разбор и решение задачи №№ 5), 6) из Задания к практическим занятиям №№ 13-14
- 3. Нахождение и графическое построение собственных векторов, соответствующих конкретным собственным значениям. Разбор и решение задач №№ 4), 7) из Задания к практическим занятиям №№ 13-14
- 3. Модель международной торговли. Разбор и решение задачи № 9) из Задания к практическим занятиям №№ 13-14
- 4. Домашнее Задание решение невыполненных задач Домашнего задания к занятиям _____№№ 11-15; решение всех невыполненных вышеперечисленных Вариантов Контрольных работ.

Список источников и литературы

Основная литература

- 29. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 30. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

Литература дополнительная

2. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 15</u> Аналитическая Геометрия. Векторная алгебра. Собственные векторы и числа Линейных операторов. (2 ч.)

Вопросы для изучения

Контрольная работа №3.

- 1. Собственные значения Матрицы Линейного преобразования.
- 2. Собственные векторы Матрицы Линейного преобразования.
- 3. Базис системы векторов. Линейная зависимость векторов.
- 4. Уравнение прямой на плоскости (различные формы). Определение угла между двумя прямыми. Условие перпендикулярности, параллельности прямых.
- 5. Векторная Алгебра. Расстояние между двумя точками. Деление отрезка в данном отношении. Формула площади треугольника.

Практические задания

- 1. Решение индивидуального варианта Контрольной работы в письменной форме.
- 2. Домашнее Задание: Решение невыполненных №№ Контрольной работы № 3 Список источников и литературы

Основная литература

- 31. Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. М. : ИНФРА-М, 2019. 318 с. https://new.znanium.com/catalog/product/1010102
- 32. Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

1. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. - 3-е изд. - М.: ЮНИТИ-ДАНА, 2017. - 479 с. https://new.znanium.com/catalog/product/1028709

<u>Практическое занятие 16</u> Коллоквиум по теоретическому материалу. Защита индивидуального Домашнего задания. (2 ч.)

Вопросы для изучения

- 1. Коллоквиум по теоретическому материалу Лекционного курса.
- (см. «Перечень Контрольных вопросов по курсу дисциплины «Линейная алгебра»; «Перечень экспресс-тестов по лекционному материалу дисциплины «Линейная алгебра».)
- 2. Обсуждение индивидуального Домашнего задания.

Практические задания

- 1. Защита индивидуального вопроса Коллоквиума по теоретическому материалу семестра в устной форме.
- 2. Защита индивидуального вопроса Тестов по теоретическому материалу семестра в устной форме.
 - 2. Защита индивидуального Домашнего задания.

Список источников и литературы

1.Рудык, Б. М. Линейная алгебра : учеб. пособие / Б.М. Рудык. - М. : ИНФРА-М, 2019. - 318 с. https://new.znanium.com/catalog/product/1010102

2.Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. — Москва: ИНФРА-М, 2019. — 479 с. https://new.znanium.com/catalog/product/990716

Литература дополнительная

- 3. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]; под ред. проф. Н.Ш. Кремера. 3-е изд. М.: ЮНИТИ-ДАНА, 2017. 479 с. https://new.znanium.com/catalog/product/1028709
 - 9.2. Методические рекомендации по подготовке письменных работ

Контрольная работа №1, Контрольная работа №2 и Контрольная работа №3 (текущий контроль) содержат типовые задания по ключевым темам дисциплины и проводятся в течение семестра после изучения соответствующего теоретического материала и закрепления этих знаний на семинарских занятиях и при выполнении домашних заданий. Контрольная работа №1 и №3 содержат по 5 заданий. Контрольная работа №2 содержит 3 задания.

Каждый студент получает индивидуальный вариант Контрольных работ. Коллоквиум по теоретическому материалу проводится в конце Семестра. Перед проведением Коллоквиума студент должен подготовить письменно ответ на 2 вопроса теоретического характера.

9.3. Иные материалы

Приложение 1 Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина «Линейная алгебра» реализуется на факультете Управления кафедрой Моделирования в экономике и управлении.

Цель дисциплины: подготовка обучающихся к использованию в своей практической деятельности возможностей вычислительной техники, современных математических методов; умению выбирать наиболее подходящий математический инструментарий; умению не только принимать решения, но и обосновывать их правильность и оптимальность. Задачи:

- изучение основ математического аппарата;
- выработка навыков решения типовых математических задач;
- развитие логического и алгоритмического мышления, умение строго излагать свои мысли;
- выработка навыков математического исследования теоретических и практических задач управления и теории систем;
- сформировать умение выбирать математический инструментарий для построения моделей экономических процессов, анализировать результаты расчетов и обосновывать полученные выводы.

Дисциплина направлена на формирование общепрофессиональной компетенции (ОПК 2):

Способен осуществлять сбор, обработку и анализ данных, необходимых для решения поставленных управленческих задач, с использованием современного инструментария и интеллектуальных информационно-аналитических систем.

В результате освоения дисциплины обучающийся должен:

Знать

- основы математических методов в объеме, необходимом для решения задач управления;

Уметь:

- решать типовые математические задачи, а также применять полученные знания к исследованию прикладных задач экономики и управления;

Впалеть:

навыками применения современного математического инструментария для решения задач управления; методикой построения, анализа и применения математических моделей для оценки состояния и прогноза развития экономических явлений и процессов управления.

По дисциплине предусмотрена промежуточная аттестация в форме экзамена.

Общая трудоёмкость освоения дисциплины составляет 4 зачётные единицы.